
Stone-Weierstrass Theorem

Theorem. Let X be a compact metric space and let C0(X,R) be the algebra of
continuous real functions defined over X. Let A be a subalgebra of C0(X,R) for
which the following conditions hold:

(1) ∀x, y ∈ X,x 6= y, ∃f ∈ A : f(x) 6= f(y)
(2) 1 ∈ A

Then A is dense in C0(X,R).
This theorem is a generalization of the classical Weierstrass approximation

theorem to general spaces.

Let Ā denote the closure of A in C0(X,R) according to the uniform convergence
topology. We want to show that, if conditions 1 and 2 are satisfied, then Ā =
C0(X,R).

First, we shall show that, if f ∈ Ā, then |f | ∈ Ā. Since f is a continuous
function on a compact space f must be bounded – there exists constants a and b
such that a ≤ f ≤ b. By the Weierstrass approximation theorem, for every ε > 0,
there exists a polynomial such that |P (x)− |x|| < ε when x ∈ [a, b]. See the proof
of the Weierstrass theorem for an elementary construction of P . Define g : X → R
by g(x) = P (f(x)). Since Ā is an algebra, g ∈ Ā. For all x ∈ X, |g(x)−|f(x)|| < ε.
Since Ā is closed under the uniform convergence topology, this implies that |f | ∈ Ā.

A corollary of the fact just proven is that if f, g ∈ Ā, then max(f, g) ∈ Ā and
min(f, g) ∈ Ā. The reason for this is that one can write

max(a, b) =
1
2

(|a+ b|+ |a− b|)

min(a, b) =
1
2

(|a+ b| − |a− b|)
Second, we shall show that, for every f ∈ C0(X,R), every x ∈ X, and every

ε > 0, there exists gx ∈ Ā such that gx ≤ f + ε and g(x) > f(x). By condition 1,
if y 6= x, there exists a function h̃xy ∈ A such that h̃xy(x) 6= h̃xy(y). Define hxy by
hxy(z) = ph̃xy(z) + q, where the constants p and q have been chosen so that

hxy(x) = f(x) + ε/2

hxy(y) = f(y)− ε/2
By condition 2, hxy ∈ A. (Note: This is the only place in the proof where condition
2 is used, but it is crucial since, otherwise, it might not be possible to construct a
function which takes arbitrary preassigned values at two distinct points of X. The
necessity of condition 2 can be shown by a simple example: Suppose that A is the
algebra of all continuous functions on f which vanish at a point O ∈ X. It is easy
to see that this algebra satisfies all the hypotheses of the theorem except condition
2 and the conclusion of the theorem is false in this case.)

For every y 6= x, define the set Uxy as

Uxy = {z ∈ X | hxy(z) < f(z) + ε}
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Since f and hxy are continuous, Uxy is an open set. Because x ∈ Uxy and
y ∈ Uxy, {Uxy | y ∈ X \ {x}} is an open cover of X. By the definition of a
compact space, there must exist a finite subcover. In other words, there exists
a finite subset {y1, y2, . . . yn} ⊂ X such that X =

⋃n
m=0 Uxym . Define gx =

min(hxy1 , hxy2 , . . . hxyn . By the corollary of the first part of the proof, gx ∈ Ā.
By construction, gx(x) = f(x) + ε/2 and g < f + ε.

Third, we shall show that, for every f ∈ C0(X,R) and every ε > 0, there exists
a function g ∈ Ā such that f ≤ g < f + ε. This will complete the proof becauase
it implies that Ā = C0(X,R). For every x ∈ X, define the set Vx as

Vx = {z ∈ X | gx(z) > f(x)}
where gx is defined as before. Since f and gx are continuous, Vx is an open set.
Because gx(x) = f(x) + ε/2 > f(x), x ∈ Vx. Hence {Vx | x} is an open cover of X.
By the definition of a compact space, there must exist a finite subcover. In other
words, there exists a finite subset {x1, x2, . . . xn} ⊂ X such that X =

⋃n
m=0 Vxn .

Define g as
g(z) = max{gx1(z), gx2(z), . . . gxn(z)}

By the corollary of the first part of the proof, g ∈ Ā. By construction, g > f . Since
gx < f + ε for every x ∈ X, g < f + ε.


