TAXA DE VARIAÇÃO

- Suponha que no intervalo de 5 anos, uma árvore cresceu de 50 cm para 150 cm. Calcule a variação média de sua altura.
- 2. Um carro, inicialmente no quilômetro 100 de uma rodovia, chega ao quilômetro 200 após 2 horas de viagem. Calcule a variação média de sua posição.
- Para atingir o seu destino em duas horas o carro do exercício anterior, teve que percorrer em média 50 km em cada hora de viagem. Isso não significa que a velocidade do carro foi sempre igual à velocidade média. Ela pode ter variado. Suponha que inicialmente
- no quilômetro 100 o carro estava parado e, portanto, sua velocidade era zero km/h no instante inicial e, ao atingir o quilômetro 200, duas horas depois, sua velocidade é 100km/h. Calcule a aceleração média do carro nestas duas horas de viagem.
- A posição de um móvel (em metros) no instante t é dada pela função $s(t) = 4t^2 +$ 3t - 5. Calcule a sua velocidade no instante $t_0 = 2s$.
- Calcule a aceleração do móvel do exercício anterior no instante t=2s.

DIFERENCIAL

- Calcule um valor aproximado para o acréscimo Δy da função $y = x^2$ no intervalo de x = 1 a 1 + dx = 1,001.
- Calcule a differencial de f(x) = ax, num ponto arbitrário x_0 .
- 8. Através da diferencial, obter uma aproximação de $\sqrt{50}$.
- Obter uma aproximação de $e^{0.9}$ através da diferencial.

REGRA DE L'HOSPITAL

- 10. Calcular:

- 11. Calcular $\lim_{x \to \frac{\pi}{2}} \left[\left(1 \frac{2x}{\pi} \right) t g x \right]$.

- 12. Calcular $\lim_{x \to 1} \left(\frac{2}{x^2 1} \frac{1}{x 1} \right)$.
- 13. Calcular:
- $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$ $\lim_{x \to 0^{+}} x^{x}$

TEOREMAS DE ROLLE E DO VALOR MÉDIO

- 14. O polinômio $f(x) = x^3 4x$ é uma função contínua e derivável para todo $x \in \mathbb{R}$, e f(2) = f(-2) = 0.Encontre $x_0 \in (-2,2)$ onde $f'(x_0) = 0$.
- 15. Verifique que as funções seguintes têm $f'(x_0) =$ 0 para algum x_0 no intervalo dado, mas alguma hipótese do teorema de Rolle não é satisfeita.
- a) $f(x) = x^2, x \in [-1,4]$ b) $f(x) = \frac{1}{x^2 1}, x \in [-2,2]$
- 16. Verifique se as condições do teorema do valor médio são satisfeitas pela função $f(x) = x^3 +$ $3x^2 - 5$ em [-1,2]. Determine os pontos desse intervalo onde se verifica a afirmação do teorema.

TAXA DE VARIAÇÃO

- 20 cm/ano 1.
- $50 \, km/h$ 2.
- $50 \, km/h^2$ 3.
- 4. 19 m/s
- $8 m/s^2$ 5.

DIFERENCIAL

- 0,002001
- 7. $a.\Delta x$
- 8. $\frac{99}{14} \cong 7,0714$
- 9. $\frac{9e}{10} \cong 2,44645$

REGRA DE L'HOSPITAL

- 10.
- a) $\frac{6}{4}$ b) 0
- 11. $\frac{2}{\pi}$
- 12. $-\frac{1}{2}$
- 13.
- a) e
- b) 1

TEOREMAS DE ROLLE E DO VALOR MÉDIO

14.
$$x = \pm \frac{2}{\sqrt{3}}$$

- 15.
- a) $f(-1) = 1 \neq f(4) = 16$ b) $[-2,2] \not\subset Dom(f) \ pois -1 \not\in Dom(f) \ e \ 1 \not\in Dom(f)$
- 16. Sim, são satisfeitas. $x_0 = -1 + \sqrt{2}$