Stone-Weierstrass Theorem

Theorem. Let X be a compact metric space and let C°(X,R) be the algebra of
continuous real functions defined over X. Let A be a subalgebra of C°(X,R) for
which the following conditions hold:

(1) Vo,y € X, £y, 3f € A: f(z) # f(y)
(2) 1A
Then A is dense in C°(X,R).

This theorem is a generalization of the classical Weierstrass approximation

theorem to general spaces.

Let A denote the closure of A in C°(X,R) according to the uniform convergence
topology. We want to show that, if conditions 1 and 2 are satisfied, then A =
CO(X,R).

First, we shall show that, if f € A, then |f| € A. Since f is a continuous
function on a compact space f must be bounded — there exists constants a and b
such that a < f < b. By the Weierstrass approximation theorem, for every e > 0,
there exists a polynomial such that |P(z) — |z|| < € when z € [a,b]. See the proof
of the Weierstrass theorem for an elementary construction of P. Define g: X — R
by g(z) = P(f(z)). Since A is an algebra, g € A. For all z € X, |g(z) —|f(z)]| < e.
Since A is closed under the uniform convergence topology, this implies that | f| € A.

A corollary of the fact just proven is that if f,g € A, then max(f,g) € A and
min(f, g) € A. The reason for this is that one can write

1
max(a,b) = 2 (Ja+b] + |a =)

1
min(a,b) = 3 (la+b] —|a— Db

)
Second, we shall show that, for every f € C°(X,R), every z € X, and every
€ > 0, there exists g, € A such that g, < f + ¢ and g(x) > f(x). By condition 1,
if y # x, there exists a function ﬁry € A such that Bmy(m) + ﬁmy(y) Define hg,y by
hay(2) = pﬁg;y () + g, where the constants p and ¢ have been chosen so that

hay (@) = (@) + /2

hay(y) = f(y) — €/2
By condition 2, h,, € A. (Note: This is the only place in the proof where condition
2 is used, but it is crucial since, otherwise, it might not be possible to construct a
function which takes arbitrary preassigned values at two distinct points of X. The
necessity of condition 2 can be shown by a simple example: Suppose that A is the
algebra of all continuous functions on f which vanish at a point O € X. It is easy
to see that this algebra satisfies all the hypotheses of the theorem except condition
2 and the conclusion of the theorem is false in this case.)
For every y # z, define the set Uy, as

Usy = {2 € X | hay(2) < f(2) + €}
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Since f and hg, are continuous, U, is an open set. Because x € U, and
y € Uy, {Usy |y € X\ {z}} is an open cover of X. By the definition of a
compact space, there must exist a finite subcover. In other words, there exists
a finite subset {y1,v2,...yn} C X such that X = (J _,Usy,,. Define g, =
min(Agy, , Rayy, - - - Pay, . By the corollary of the first part of the proof, g, € A.
By construction, g,(x) = f(z) +¢/2 and g < f + €.

Third, we shall show that, for every f € C°(X,R) and every € > 0, there exists
a function g € A such that f < g < f + e. This will complete the proof becauase

it implies that A = C°(X,R). For every = € X, define the set V, as

Ve ={z€ X ]g.(2) > f(2)}
where g, is defined as before. Since f and g, are continuous, V, is an open set.
Because g, (z) = f(x) +¢/2 > f(x), x € V,. Hence {V, | x} is an open cover of X.
By the definition of a compact space, there must exist a finite subcover. In other

words, there exists a finite subset {x1,22,...2,} C X such that X = ! _, Va
Define g as

n*

9(2) = max{gz, (2), 9, (2), - - - g, (2)}
By the corollary of the first part of the proof, g € A. By construction, g > f. Since
ge < fteforeveryx € X, g< f+e.



