
Spaces of curves on manifolds

Our goal in these notes is to provide an extensive discussion of spaces
of curves on manifolds especially with an eye towards applications in semi-
Riemannian geometry, and especially Lorentzian geometry. There is a plethora
of possible choices both of regularity classes of curves and of topologies on suit-
able sets of such curves. We shall focus here mostly on the case of continuous
curves with topologies closely related to the so-called compact-open topologies.
This choice is motivated by its large applicability.

1 Prelude: the compact-open topology on spaces
of continuous maps

We digress here from our main exposition to review a number of important
facts about the so-called compact-open topology on spaces of continuous maps
which are fundamental for us here. Readers familiar with these facts or unwilling
to go too deep in them at this moment should just skim over the main results
and definitions in this section order to fix notation and terminology, and then
proceed to the next section.

Given two topological spaces X and Y , let C(X,Y ) denote the set of all
continuous maps from X into Y . Given a compact subset K ⊂ X and an open
subset U ⊂ Y , let V (K,U) denote the set of all functions f ∈ C(X,Y ) such
that f(K) ⊂ U . The topology generated by the collection of all such V (K,U)
is called the compact-open topology on C(X,Y ).

We use Cc(X,Y ) as the shorthand for the pair (i.e., the topological space)
formed by C(X,Y ) endowed with the compact-open topology. Our main goal
here will be to give suitable conditions on both X and Y to establish the all-
important Arzelà-Ascoli theorems, which characterize in a convenient fashion
the (pre)compact subsets of Cc(X,Y ).

When the topology of Y is metrizable, the following well-known result ap-
plies. For this reason, the compact-open topology is also referred to as the
topology of uniform convergence in compact subsets in this context.

Theorem 1.1 Let X,Y be topological spaces with Y metrizable, and pick any
metric d generating the topology on Y. Then, given a sequence (fk) ⊂ C(X,Y )
and f ∈ C(X,Y ),

fk
Cc(X,Y )−→ f ⇔ fk|K → f |K d-uniformly for any compact subset K ⊂ X.

Proof. (⇒)

Suppose fk
Cc(X,Y )−→ f , and let K ⊂ X be a compact set. Denote an open ball in

(Y, d) of radius r > 0 and center y ∈ Y by Bdr (y), and the closed ball of same

radius and center by B
d

r(y) .



Fix ε > 0. Since f is continuous, for each x ∈ K we can pick some Ux 3 x
open subset of X for which f(Ux) ⊂ Bdε/3(f(x)). Then, it is easily checked that

f(Ux) ⊂ Bdε/3(f(x)) ⊂ Bdε/2(f(x)).

Now, {Ux}x∈K is an open cover of K, from which we extract a finite subcover
{Ux1 , . . . , Ux`

}. Note that each Uxi ∩K (i = 1, . . . , `) is closed and contained
in K, hence also compact. The set

V :=
⋂̀
i=1

V (Uxi
∩K,Bdε/2(f(xi))

is an open set in Cc(X,Y ) containing f . Using the convergence of (fk) in the
compact-open topology, there exists some N ∈ N for which fk ∈ V whenever
k ∈ N is larger than N . Let z ∈ K, and i ∈ {1, . . . , `} for which z ∈ Uxi

. Then,
z ∈ Uxi ∩K, and hence d(fk(z), f(xi)) < ε/2 for k > N by our choices. Thus,
using the triangle inequality we have

d(fk(z), f(z)) ≤ d(fk(z), f(xi)) + d(f(xi), f(z)) <
ε

2
+
ε

2
= ε,

whenever k > N . Since z was chosen arbitrarily we conclude that fk|K → f |K
d-uniformly as desired.
(⇐)
Suppose now fk|K → f |K d-uniformly for any compact subset K ⊂ X, and fix
any Cc(X,Y )-open set U 3 f . Then there exist compact subsets K1, . . . ,K` of
X and open subsets U1, . . . , U` of Y for which

f ∈
⋂̀
i=1

V (Ki, Ui) ⊂ U .

For each i ∈ {1, . . . , `} and each x ∈ Ki, choose a number εix > 0 for which

Bd2εix(f(x)) ⊂ Ui.

As {Bdεix(f(x))}x∈Ki
is an open covering of the compact set f(Ki), choose a

finite subcover
{Bdεi

xi
1

(f(xi1)), . . . , Bdεi
xi
ji

(f(xiji))}.

Let ε := min{εil : i = 1, . . . , `; l = 1, . . . , ji}. Let i ∈ {1, . . . , `} be given. Using
uniform convergence in Ki choose Ni ∈ N such that d(fk(x), f(x)) < ε for every
x ∈ Ki whenever k ∈ N is larger than Ni. For each z ∈ Ki, there exists some
xijz with f(z) ∈ Bd

εi
xi
jz

(f(xijz )) for some jz ∈ {1, . . . , ji}. Thus, for k > Ni, the

triangular inequality gives

d(fk(z), f(xijz )) ≤ d(fk(z), f(z)) + d(f(z), f(xijz )) < ε+ εixi
jz

≤ 2εixi
jz

,



that is, fk(z) ∈ Bd
2εi

xi
jz

(f(xijz )) ⊂ Ui, whence we conclude that fk(Ki) ⊂ Ui for

k > Ni. Finally, set N = max{N1, . . . , N`}. Then for any k ∈ N larger than

N we will have fk ∈
⋂`
i=1 V (Ki, Ui) ⊂ U . Thus, fk → f in Cc(X,Y ) and the

proof is complete.

�

We shall be actually interested exclusively in the case when Y is metrizable
(indeed when it is a manifold), so that the previous result applies. In this con-
text, if X is also “nice”, then so is Cc(X,Y ). We deal with two such situations
here: when X is compact (but not necessarily Hausdorff), and when X is Haus-
dorff, second countable and locally compact (which of course occurs, e.g., when
X is a finite-dimensional smooth manifold). It is for these two cases that we
shall prove Arzelà-Ascoli theorems.

1.1 Arzelà-Ascoli I: the compact case

Theorem 1.2 Let X,Y be topological spaces with X compact and Y metrizable.
Fix a metric d on Y whose associated topology coincides with that of Y . Then,
the following statements hold.

i) The map

d∞ : (f1, f2) ∈ C(X,Y )× C(X,Y ) 7→ sup
x∈X

d(f1(x), f2(x)) ∈ R+

is a metric on C(X,Y ).

ii) If (Y, d) is a complete metric space, then so is (C(X,Y ), d∞).

iii) The metric topology on C(X,Y ) associated with d∞ coincides with the
compact-open topology.

Proof. Proving (i) is easy and left as an exercise for the reader.
(ii)
Suppose (Y, d) is complete and let (fk)k∈N be a Cauchy sequence on the metric
space (C(X,Y ), d∞). Then for each x ∈ X the sequence (fk(x))k∈N is Cauchy
in (Y, d) (check this!) so the function

f : x ∈ X 7→ lim
k→+∞

fk(x) ∈ Y

is well-defined. We then need to check that f ∈ C(X,Y ) and then that fk
d∞→ f .

We establish both of these facts via similar arguments.
Fix ε > 0. Choose k0 ∈ N such that

k, k′ ∈ N, k, k′ ≥ k0 =⇒ d∞(fk, fk′) < ε/4.

By the definition of f we can also choose, for each x ∈ X, a kx ∈ N larger than
k0 such that d(fkx(x), f(x)) < ε/4.



To prove the continuity of f , let x0 ∈ X. Since fkx0
is in particular contin-

uous at x0, there exists an open subset U 3 x0 of X for which

x ∈ U =⇒ d(fkx0
(x), fkx0

(x0)) < ε/4.

Therefore, for any x ∈ U we have, repeatedly using the triangle inequality,

d(f(x), f(x0)) ≤ d(f(x), fkx(x)) + d(fkx(x), fkx0
(x))

+ d(fkx0
(x), fkx0

(x0)) + d(f(x0), fkx0
(x0))

<
ε

4
+
ε

4
+ d∞(fkx , fkx0

) +
ε

4

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε,

where we have used that kx, kx0
> k0 to obtain the last inequality. Thus, f is

continuous at x0 and we conclude that f ∈ C(X,Y ), as desired.
To establish convergence, note that for any k > k0 we have, for every x ∈ X,

d(fk(x), f(x)) ≤ d(fk(x), fkx(x)) + d(fkx(x), f(x))

<
ε

4
+ d∞(fkx , fk)

<
ε

4
+
ε

4
=
ε

2
,

so
d∞(fk, f) ≤ ε

2
< ε.

Thus, fk
d∞→ f . We conclude that (C(X,Y ), d∞) is indeed complete.

(iii)
Let U ⊂ C(X,Y ) be open in the compact-open topology and fix f ∈ U . Then,
there exist compact subsets K1, . . .Km of X and open subsets U1, . . . , Um of Y
for which

f ∈
m⋂
i=1

V(Ki, Ui) ⊂ U .

Fix i ∈ {1, . . . ,m}. For each x ∈ Ki, choose εix > 0 such that Bd2εix
(f(x)) ⊂ Ui.

Since {Bdεix(f(x))}x∈Ki is an open cover othe compact set f(Ki) ⊂ Y , extract a

finite subcover
{Bdεi

xi
1

(f(xi1)), . . . , Bdεi
xi
ki

(f(xiki))}.

Finally, let εi := min{εi
xi
1
, . . . , εi

xi
ki

}. Given f̂ ∈ Bd∞εi (f), and x ∈ Ki, let

j ∈ {1, . . . , ki} such that f(x) ∈ Bd
εi
xi
j

(f(xij)). Then

d(f̂(x), f(xij)) ≤ d(f̂(x), f(x))+d(f(x), f(xij)) < d∞(f̂ , f)+εixi
j
< εi+ε

i
xi
j
≤ 2εixi

j
,



whence f̂(x) ∈ Bd
2εi

xi
j

(f(xij)) ⊂ Ui. We conclude that f̂ ∈ V(Ki, Ui). Since this

reasoning is valid for each i, we may now set ε := min{ε1, . . . , εm}, and conclude
that

Bd∞ε (f) ⊂
m⋂
i=1

V(Ki, Ui) ⊂ U ,

and thus that U is indeed open in (C(X,Y ), d∞).
Now, fix f ∈ C(X,Y ), and a number r > 0. By the continuity of f and

the compactness of X we can choose a finite open cover O1, . . . ,Om of X and
elements xi ∈ Oi (i = 1, . . . ,m) such that

f(Oi) ⊂ Bdr/4(f(xi)) ∀i ∈ {1, . . . ,m}.

Note also that again by continuity, for each i ∈ {1, . . . ,m} we have f(Oi) ⊂
B
d

r/4(f(xi)), where the latter denotes the closed ball in Y of radius r/4. Since

Ki := Oi is closed in the compact set X, it is also compact. Let

f̂ ∈
m⋂
i=1

V(Ki, B
d
r/4(f(xi))).

Given x ∈ X, pick j ∈ {1, . . . ,m} with x ∈ Oj ⊂ Kj . Then

d(f̂(x), f(x)) ≤ d(f̂(x), f(xj)) + d(f(x), f(xj)) <
r

4
+
r

4
=
r

2
.

Since x is arbitrary, f̂ ∈ Bd∞r (f). We conclude that

m⋂
i=1

V(Ki, B
d
r/4(f(xi))) ⊂ Bd∞r (f),

and thus that Bd∞r (f) is open in Cc(X,Y ). This concludes the proof.

�

Of course, in the conditions of Theorem 1.2 and in view of Theorem 1.1, a
sequence (fk) converges in the compact-open topology if and only if its converges
uniformly on X.

Recall that if (M,d) is a metric space and A ⊂M is any set, then A is said
to be totally bounded if for any ε > there exist m ∈ N and x1, . . . , xm ∈M such
that

A ⊂
m⋃
i=1

Bdε (xi).

Recall also that A is compact if and only if it is totally bounded and complete
(as a metric space with the restricted metric). In particular, this means that if
(M,d) is a complete metric space, then A is precompact (i.e., A is compact) if
and only if A is totally bounded.



Theorem 1.3 (Arzelà-Ascoli - the compact case) Let X be a compact topo-
logical space and let (Y, d) be a complete metric space. A subset E ⊂ C(X,Y ) is
precompact in the compact-open topology if and only if it satisfies the following
two conditions.

i) E is equicontinuous, i.e., for any x ∈ X and any ε > 0 there exists an
open set U 3 x of X such that

f ∈ E, y ∈ U =⇒ d(f(y), f(x)) < ε.

ii) E is pointwise precompact, i.e., for every x ∈ X the set

E(x) := {f(x) : f ∈ E}

is precompact in Y .

Proof. Let E ⊂ C(X,Y ). In view of Theorem 1.2 and with the notation therein
(C(X,Y ), d∞) is also a complete metric space. Due to the previous remarks,
E is precompact if and only if it is totally bounded in (C(X,Y ), d∞). Thus we
actually shall prove:

E is totally bounded if and only if (i) and (ii) hold.

We fix an abitrary ε > 0 for the rest of the proof.
Assume first that E is totally bounded. Pick f1, . . . , fm ∈ C(X,Y ) such

that E ⊂ ∪mi=1B
d∞
ε/3(fi). Let x0 ∈ X. By continuity, we can choose an open set

U 3 x0 of X for which

x ∈ U =⇒ d(fi(x), fi(x0)) < ε/3, ∀i ∈ {1, . . . ,m}.

Let f ∈ E be given. Pick j ∈ {1, . . . ,m} for which f ∈ Bd∞ε/3(fi). Then

x ∈ U ⇒ d(f(x), f(x0)) ≤ d(f(x), fj(x))+d(fj(x), fj(x0))+d(fj(x0), f(x0)) < 2d∞(f, fj)ε/3 < ε.

Besides, we immediately have

d(f(x0), fj(x0)) ≤ d∞(f, fj) < ε/3 < ε,

so f(x0) ∈ Bd(f(j(x0)). Since f ∈ E and x0 were chosen arbitrary, we now
conclude that E is equicontinuous, and

E(x0) ⊂ ∪mi=1B
d
ε (fi(x0)),

thus E(x0) is totally bounded in (Y, d), hence precompact therein.
Now assume that (i) and (ii) hold. Using equicontinuity and the compact-

ness ofX we can choose a finite open cover {U1, . . . , Um} ofX and {x1, . . . , xm} ⊂
X such that for each i = 1, . . . ,m,

x ∈ Ui =⇒ d(f(x), f(xi)) < ε/6, ∀f ∈ E. (1)



Using (ii) we can easily check that

Cm := {(f(x1), . . . , f(xm)) : f ∈ E}

is precompact and hence totally bounded in the (complete) metric space (Y m, dm)
where dm is the metric given by

dm((z1, . . . , zm), (y1, . . . , ym)) =

m∑
j=1

d(zj , yj).

Therefore, there exist z1, . . . , z` ∈ Y m such that

Cm ⊂
⋃̀
j=1

Bd
m

ε/6(zj). (2)

In addition, we can assume, without loss of generality, that Bd
m

ε/6(zj)∩Cm 6= ∅,
so we pick f1, . . . , f` ∈ E such that

(fi(x1), . . . , fi(xm)) ∈ Bd
m

ε/6(zi), ∀i ∈ {1, . . . , `}. (3)

Now, let f ∈ E be given. Since (f(x1), . . . , f(xm)) ∈ Cm, by (2) there exists
λ ∈ {1, . . . , `} such that (f(x1), . . . , f(xm)) ∈ Bdmε/6(zλ). But then, by (3),

m∑
i=1

d(f(xi), fλ(xi)) ≤
m∑
i=1

[d(f(xi), z
λ
i ) + d(zλi , fλ(xi))] <

ε

6
+
ε

6
=
ε

3
. (4)

Then, given x ∈ X, we have j ∈ {1, . . . ,m} for which x ∈ Uj , and we have by
the triangle inequality

d(f(x), fλ(x)) ≤ d(f(x), f(xj)) + d(f(xj), fλ(xj)) + d(fλ(xj), fλ(x))

(1)
<

ε

3
+ d(f(xj), fλ(xj)) ≤

ε

3
+

m∑
i=1

d(f(xi), fλ(xi))

(4)
<

2ε

3
,

whence we conclude that

d∞(f, fλ) ≤ 2ε

3
< ε,

and hence that

E ⊂
⋃̀
λ=1

Bd∞ε (fλ).

That its, E is totally bounded as desired.

�



1.2 Arzelà-Ascoli II: the locally compact case

The previous compactness assumption on X is too restrictive for most of our
applications. Hence we weaken it as follows.

Theorem 1.4 Let X,Y be topological spaces with X locally compact, Hausdorff
and second-countable, and Y metrizable. Then the compact-open topology on
C(X,Y ) is metrizable. If Y is in addition completely metrizable, i.e., if it
admits a complete topological metric, then so does Cc(X,Y ).

Proof. Fix throughout the proof a metric d on Y whose associated topology
coincides with that of Y . We proceed by a series of Claims.
Claim 1: there exists a sequence (Km)m∈N of compact subsets of X for which

Km ⊂ intKm+1, ∀m ∈ N, (5)

X =
⋃
m∈N

Kn. (6)

To prove this, let B be a countable basis for the topology of X. Let

B′ := {B ∈ B : ∃K ⊂ X compact such that B ⊂ K}.

Given x ∈ X, since X is locally compact there exists a compact subset K ⊂ X
with x ∈ intK. Since B is a basis, there exists B ∈ B with

x ∈ B ⊂ intK ⊂ K,

and since X is Hausdorff, K is closed, so B ⊂ K. We conclude that B ∈ B′,
and hence that B′ is a countable open cover of X. Choose an enumeration
B′ = {B` : ` ∈ N}.

We now define (Km)m∈N inductively as follows. Let K1 := B1, and given
a sequence of j (≥ 1) compact subsets K1, . . . ,Kj satisfying (5) let kj be the
least natural number ≥ j for which

Kj ⊂ B1 ∪ . . . ∪Bkj .

Now, define
Kj+1 := B1 ∪ . . . ∪Bkj .

Then we immediately see that Kj ⊂ intKj+1. In addition, since B′ covers X,
given x ∈ X there exists ` ∈ N for which

x ∈ B` ⊂ B1 ∪ . . . ∪B` ⊂ B1 ∪ . . . ∪Bk` ⊂ K`+1

by construction, since k` ≥ `. Thus, we have shown that (Km)m∈N thus built
indeed satisfies (6), and Claim 1 is proved.
Fix now for the rest of the proof the sequence (Km)m∈N of compact subsets of
X as in the previous Claim. For each i ∈ N and any f1, f2 ∈ C(X,Y ) define

di(f1, f2) := sup
x∈Ki

d(f1(x), f2(x)).



The proof of the next Claims will rely on the fact that the function

ϕ : x ∈ [0,+∞) 7→ x

1 + x

is an increasing homeomorphism onto [0, 1).
Claim 2: The map

D∞ : (f1, f2) ∈ C(X,Y )× C(X,Y ) 7→
∞∑
i=1

1

2i
di(f1, f2)

1 + di(f1, f2)
∈ R+ (7)

is a metric on C(X,Y ).
It is immediate that D∞ is a well-defined map, and symmetry is also clear. If
f1, f2 ∈ C(X,Y ) are such that D∞(f1, f2) ≡ 0, then for each i ∈ N we have
di(f1, f2) ≡ 0, whence we conclude that f1|Ki

≡ f2|Ki
, and from (6) we conclude

that f1 ≡ f2. Thus all that remains to be shown is the triangle inequality.
To this end, let f1, f2, f3 ∈ C(X,Y ) be given. The triangle inequality for d

on Y easily gives, for each i ∈ N,

di(f1, f2) ≤ di(f1, f3) + di(f3, f2). (8)

Since ϕ is (strictly) increasing, (8) implies that

di(f1, f2)

1 + di(f1, f2)
≤ di(f1, f3) + di(f3, f2)

1 + di(f1, f3) + di(f3, f2)
≤ di(f1, f3)

1 + di(f1, f3)
+

di(f3, f2)

1 + di(f3, f2)
.

(9)
Therefore, multipying both sides of (9) by 1/2i and summing over i ∈ N yields

D∞(f1, f2) ≤ D∞(f1, f3) +D∞(f3, f2)

as desired. This concludes the proof of Claim 2.

Claim 3: The metric topology of (C(X,Y ), D∞) is the same as that of Cc(X,Y ).

First, let us show that given r > 0 and f ∈ C(X,Y ), the open D∞-ball
BD∞r (f) of radius r and centered at f is open in Cc(X,Y ). For that, it is
enough to show that there exists compact subsets C1, . . . , Cm ⊂ X and open
subsets U1, . . . , Um such that

f ∈
m⋂
i=1

V(Ci, Ui) ⊂ BD∞r (f).

Using the continuity of ϕ at 0, pick δ > 0 such that

0 ≤ x < δ =⇒ ϕ(x) <
r

2
.

Now, let N ∈ N for which
∞∑

i=N+1

1

2i
<
r

2
.



Since KN ⊂ X is compact and f is continous, we can pick a finite open
cover {O1, . . . ,Om} of KN by precompact subsets and xi ∈ Oi with f(Oi) ⊂
Bdδ/4(f(xi)) (i = 1, . . . ,m). Then, setting Ci := Oi and Ui := Bdδ/3(f(xi)) for

i ∈ {1, . . . ,m}, we have

f ∈
m⋂
i=1

V(Ci, Ui) =: U .

Let f̂ ∈ U . Given x ∈ KN , let i ∈ {1, . . . ,m} such that x ∈ Ci. Then

d(f̂(x), f(x)) ≤ d(f̂(x), f(xi)) + d(f(xi), f(x)) <
2δ

3
.

Thus,

0 ≤ d1(f̂ , f) ≤ · · · ≤ dN (f̂ , f) ≤ 2δ

3
< δ ⇒ d`(f̂ , f)

1 + d`(f̂ , f)
<
r

2
` = 1, . . . , N.

But then

D∞(f̂ , f) =

N∑
`=1

1

2`
d`(f̂ , f)

1 + d`(f̂ , f)
+

∞∑
`=N+1

1

2`
d`(f̂ , f)

1 + d`(f̂ , f)
<
r

2
+
r

2
< r,

i.e. we have established that U ⊂ BD∞r (f) as desired.
Conversely, let U be open in Cc(X,Y ) and let f ∈ U . Since we wish to show

that the latter set is open in the metric space (C(X,Y ), D∞), we only need to
show that C(X,Y ) \U is sequentially closed, i.e. that for a convergent sequence

fk
D∞→ f with (fk) ⊂ C(X,Y ) \ U we also have f ∈ C(X,Y ) \ U .
Fix then such a sequence. Let ε > 0 be given, and fix ` ∈ N. Since ϕ−1 is

continuous, there exists 0 < δ` < 1 such that

0 ≤ x

1 + x
< 2`δ` =⇒ 0 ≤ x < ε.

Let k` ∈ N such that for any integer k > k` we have D∞(fk, f) < δ`. Then, for
every integer k > k`,

d`(fk, f)

1 + d`(fk, f)
≤ 2`D∞ < 2`δ` =⇒ d`(fk, f) < ε.

This shows that
fk|K`

→ f |K`
d-uniformly .

Since ` was chosen arbitrarily, given any compact set K ⊂ X, there exists ` ∈ N
for which K ⊂ K` due to (5)-(6), so

fk|K → f |K d-uniformly, for any compact set K ⊂ X.

By Thm. 1.1, fk
Cc(X,Y )−→ f . If f ∈ U then eventually fk ∈ U , a contradition.

Thus f ∈ C(X,Y ) \ U as desired. Thus, Claim 3 is established.



Claim 4: If (Y, d) is complete, then so is (C(X,Y ), D∞).

Assume therefore that (Y, d) is complete, and let (fk) ⊂ C(X,Y ) be a
Cauchy sequence in (C(X,Y ), D∞). For each ` ∈ N, arguing simillarly to the
last part of the proof of Claim 3 easily establishes that (fk|K`

) is Cauchy in
the metric space (C(K`, Y ), d`). Applying Thm. 1.2(ii) for X = K` we con-
clude that there exists f ` ∈ C(K`, Y ) such that fk|K`

→ f ` d-uniformly. Define
f ∈ C(X,Y ) by setting

f |K`
:= f `, ∀` ∈ N.

One easily checks that f is well defined, and by construction fk|K`
→ f |K`

d-uniformly. By Thm. 1.1, fk
Cc(X,Y )−→ f , and by Claim 3, fk

D∞→ f , thus
completing the proof of Claim and of theTheorem.

�

Theorem 1.5 (Arzelà-Ascoli II- the locally compact case) Let X be a lo-
cally compact, Hausdorff and second countable topological space and let (Y, d) be
a complete metric space. A subset E ⊂ Cc(X,Y ) is precompact if and only if it
satisfies the following two conditions.

i) E is equicontinuous, i.e., for any x ∈ X and any ε > 0 there exists an
open set U 3 x of X such that

f ∈ E, y ∈ U =⇒ d(f(y), f(x)) < ε.

ii) E is pointwise precompact, i.e., for every x ∈ X the set

E(x) := {f(x) : f ∈ E}

is precompact in Y .

Proof. Fix E ⊂ Cc(X,Y ). Just as in Claim 1 in the proof of Thm. 1.4, we fix
a sequence (Km)m∈N of compact subsets of X satisfying conditions (5)-(6). Fix
an integer ` ∈ N, and put

E` := {f |K`
: f ∈ E}.

Then E` ⊂ C(K`, Y ). Recall also that the topology on C(X,Y ) is given by the
complete metric D∞ defined Thm. 1.4.

Assume first that E is equicontinuous and pointwise compact. Then the
same holds (check!) for E` ⊂ C(K`, Y ). By the Arzelà-Ascoli Thm.1.3, E` is
precompact in C(K`, Y ). Let (fk)k∈N ⊂ E be given. Then (fk|K`

)k∈N ⊂ E`.
Thus, precompactness in this metrizable context implies that there exists f ` ∈
C(K`, Y ) such that fk|K`

→ f ` d-uniformly. Since these arguments hold for any
` ∈ N, define f ∈ C(X,Y ) by setting

f |K`
:= f `, ∀` ∈ N.



One then checks that f is well defined, and by construction fk|K`
→ f |K`

d-

uniformly. By Thm. 1.1, fk
Cc(X,Y )−→ f , thus proving that E is precompact.

Conversely, assume E is precompact. Then for each ` ∈ N, E` as defined
above will be precompact in C(K`, Y ). But given any x0 ∈ X, we have that
x0 ∈ intK` for large enough `. Again by Thm.1.3 applied to this K`, we
conclude that E` is equicontinuous and pointwise compact in K`. This in turn
shows that E is equicontinuous and pointwise compact in X. The details of the
arguments are left to the reader.

�

The following very useful Corollary can now be immediately deduced.

Corollary 1.1 Let N,M be finitely-dimensional smooth manifolds, and h a
complete Riemannian metric on M with distance function dh.
Let (fk : N →M)k∈N be sequence of continuous functions. Suppose

i) {fk : k ∈ N} is equicontinuous, and

ii) for every x ∈ N the set {fk(x) : k ∈ N} ⊂M is dh-bounded.

Then there exist a subsequence (fki : N → M)i∈N and a continuous function
f : N →M such that

fki |K → f |K dh-uniformly, for every compact set K ⊂ N .

Comment on the proof. Just note that due to the Hopf-Rinow theorem, as h is
complete, dh-boundedness is the same as precompactness in M , so we can apply
Thm. 1.5 to E = {fk : k ∈ N}.

�

Remark 1.1 A prime example in which Conditions (i) and (ii) in Corollary
1.1 (in the presence of the other assumptions) are met is when there exist some
metric d on N (say, arising from a Riemannian metric), a constant C > 0 and
some x0 ∈ N for which

i’) dh(fk(x), fk(y)) ≤ C · d(x, y), ∀x, y ∈ N , ∀k ∈ N, and

ii’) {fk(x0) : k ∈ N} ⊂M is dh-bounded.

(Exercise: Check this.) Condition (i′) says the functions are Lipschitz with
a“uniform-in-k” Lipschitz constant. This arises in concrete situations, for ex-
ample, when the functions are C1 with uniformly bounded derivatives.



2 The space of curves on a manifold

It is the purpose of this section is to define a suitable topology on the space
of (continuous) curves on a manifold which is relevant for Lorentzian geometry,
and highlight some properties of the corresponding topology on the subset of
continuous causal curves on a Lorentzian manifold with respect to the Lorentzian
length functional we shall define below.

We fix throughout a connected n-dimensional smooth (i.e., C∞) manifold1M
(n ≥ 2). We also fix an auxiliary complete Riemannian metric h on M , whose
distance function we denote by dh. We denote by I any arbitrary (i.e., closed,
semi-closed or open) non-empty interval in R, unless otherwise stated.

2.1 Basic definitions & notation

By a (parametrized C0) curve on M we mean any continuous map α : I ⊂
R → M . In the specific case when I is a compact non-empty interval I =
[a, b], α is said to be a (parametrized) curve segment. (We shall often omit the
qualification “segment” when speaking about such curves, unless we feel that
special emphasis is desirable.)

Given a curve α : I ⊂ R → M , a point p ∈ M is said to be a right [resp.
left] endpoint (of α) if for any neighborhood U 3 p, there exists some t0 ∈ I for
which α(t) ∈ U for every t ∈ I, t ≥ t0 [resp. t ≤ t0. Since M is Hausdorff, a
right [resp. left] endpoint of α is unique if it exists. In this case, α is said to be
right-[resp. left-]extendible. Otherwise it is right-[resp. left-]inextendible. If α
is both right- and left-inextendible, it is said to be inextendible. In particular,
any curve segment α : [a, b]→M is both right- and left-extendible in this sense
and α(a), α(b) are its left and right endpoints, respectively.

We collect all curve segments in the set

C̃M := {α : [a, b]→M : a, b ∈ R, a < b, α is a curve},

which we refer to as the space2 of parametrized (C0) curves on M .
In the previous definition, curves may differ as maps but have the same im-

age, in which case one sometimes wishes to refer to them as different parametriza-
tions of the “same” curve. The point of this terminology is that in some contexts,
these parametrizations are in themselves without geometric significance3.

We can make this geometric invariance more precise as follows. Given curves
β : J → M and α : I → M , we say that β is a reparametrization of α if there
exists an increasing homeomorphism f : J → I with β = α ◦ f .

1Here and hereafter, “manifold” means a finite-dimensional real smooth Hausdorff second
countable manifold.

2The apellation “space” is somewhat abusive here as we have only a set without any further
structure. But we will soon add a suitable topology thereon. When we do, it will become a
bona fide topological space, referred to by the same name.

3An exception to this general rule are geodesics when we have some background affine
connection: in this case affine reparametrizations are almost exclusively adopted.



Clearly, “being a reparametrization of” defines an equivalence relation ∼ on
C̃M by

β ∼ α⇔ ∃ an increasing homeomorphism f : [c, d]→ [a, b] with β = α ◦ f.

The space of (unparametrized C0) curves on M is the quotient

CM := C̃M/ ∼ .

We shall denote by [α] the equivalence class of α ∈ C̃M , although we sometimes
abuse notation and omit the brackets if there is no risk of confusion4.

It will also be convenient to introduce a separate notation for the set of all
compact non-degenerate intervals if R:

J = {[a, b] ⊂ R : a < b}. (10)

We also turn J into a metric space by defining a distance DH : J × J → R+

by
DH([a, b], [c, d]) := |a− c|+ |b− d|, ∀[a, b], [c, d] ∈ J . (11)

Exercise 2.1 (Hausdorff metric) Given any metric space (X, d), let

ΘX := {K ⊂ X : K is compact and non-empty}.

Define the map

ρX : (A,B) ∈ ΘX ×ΘX 7→ max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)} ∈ R.

a) Show that ρX is a metric on ΘX . (This metric was first introduced by F.
Hausdorff himself, and is thus know as the Hausdorff metric.)

b) Show that if X = R and d is its standard metric given by the absolute value,
the restriction of the corresponding ρX to J given in (10) is precisely the
metric given in (11).

2.2 The topology of uniform convergence

3 Continuous causal curves on a Lorentz mani-
fold

Throughout these notes, we fix an n-dimensional (C∞) spacetime (M, g)
(n ≥ 2). We also fix an auxiliary complete Riemannian metric h on M . We
denote by I any arbitrary (i.e., closed, semi-closed or open) non-empty interval
in R, unless otherwise stated.

4It is worth pointing out that in defining the space of unparametrized curves we could just as
well have regarded as equivalent curves which differ by composition with any homeomorphism,
either increasing or decreasing. For technical reasons we choose not to do that here.



Recall that for any p, q ∈M , we write p� q [resp. p < q] to mean that there
exists a piecewise smooth future-directed timelike [resp. causal] curve segment
α : [a, b]→M with α(a) = p and α(b) = q. If α[a, b] ⊂ U for some subset U ⊂M
and we wish to emphasize this, then we write p�U q [resp. p <U q]. Piecewise
smoothness, however, turns out to be too restrictive when considering spaces of
curves, as we shall be interest in doing here. Our first goal, therefore, will be
to extend the notion of causality to continuous curves. This is accomplished by
any of the equivalent statements in the following proposition.

We deal only with future-directed causal curves here; the analogous past-
directed versions are understood to obtain via time-duality.

Proposition 3.1 For a continuous curve α : I ⊂ R→ M , the following state-
ments are equivalent.

i) For any t0 ∈ I, there exist a convex normal neighborhood U(t0) ⊂ M of
α(t0) and a number ε0 > 0 such that α(I ∩ (t0 − ε0, t0 + ε0)) ⊂ U(t0) and
for any s, t ∈ I ∩ (t0 − ε0, t0 + ε0),

s < t⇒ α(s) <U(t0) α(t).

ii) For any t0 ∈ I, and for any convex normal neighborhood U ⊂M of α(t0),
there exists a number ε0 > 0 such that α(I ∩ (t0 − ε0, t0 + ε0)) ⊂ U and
for any s, t ∈ I ∩ (t0 − ε0, t0 + ε0),

s < t⇒ α(s) <U α(t).

iii) For any convex normal neighborhood U ⊂ M and for any s, t ∈ I such
that s < t and α[s, t] ⊂ U , we have α(s) <U α(t).

Proof. (i)⇒ (ii)
Fix t0 ∈ I, a convex normal neighborhood U(t0) ⊂ M of α(t0) and a number
ε0 > 0 as in (i). Given any convex normal neighborhood U ⊂M of α(t0), pick a
convex normal neighborhood V ⊂ U∩U(t0). By continuity there exists a number
0 < ε ≤ ε0 such that α(I∩(t0−ε, t0+ε)) ⊂ V. For any s, t ∈ I∩(t0−ε, t0+ε) with
s < t, the radial geodesic in V from α(s) to α(t) coincides with the corresponding
radial geodesic in U(t0), and we have α(s) <U(t0) α(t) by assumption, which
means that this geodesic is causal; since it also coincides with that in U , we
conclude that α(s) <U α(t).
(ii)⇒ (iii)
Fix any convex normal neighborhood U ⊂ M and any s, t ∈ I such that s < t
and α[s, t] ⊂ U . Using (ii), for each λ ∈ [s, t], pick a number ελ > 0 such that
α(I ∩ (λ− ελ, λ+ ελ)) ⊂ U and for any λ′, λ′′ ∈ I ∩ (λ− ελ, λ+ ελ)

λ′ < λ′′ ⇒ α(λ′) <U α(λ′′).

Let ε > 0 be a Lebesgue number for the open cover {(λ−ελ, λ+ελ)}λ∈[s,t] of the
compact set [s, t]: for any set X ⊂ [s, t] with diameter less than ε, there exists



λ ∈ [s, t] for which X ⊂ (λ− ελ, λ + ελ). Choose any partition λ0 = s < · · · <
λk = t of the interval [s, t] with max{|λi − λi−1| : i = 1, . . . , k} < ε. Thus, by
construction,

α(λi−1) <U α(λi), i = 1, . . . , k.

By choosing, for each i = 1, . . . , k, a piecewise smooth future-directed causal
curve segment βi in U from α(λi−1) to α(λi), and concatenating them, we end
up with a piecewise smooth causal curve segment β connecting α(s) and α(t)
in U , as desired.
(iii)⇒ (i) is immediate.

�

Definition 3.1 (Continuous causal curves) A continuous map α : I ⊂ R→
M is a future-directed C0 causal curve if any (and hence all) of the statements
(i)− (iii) in Prop. 3.1 holds.

Remark 3.1 Two observations must be borne in mind about Definition 3.1.

a) In any convex open set U ⊂ M , whenever p <U q we in particular must
have p 6= q. Thus, no causal curve can self-intersect inside a convex
normal neighborhood. In particular, a future-directed C0 causal curve α :
I ⊂ R → M can never become constant along a non-empty subinterval
J ⊂ I.

b) It follows quite easily from the definition that if α : I ⊂ R → M is a
future-directed C0 causal curve, and f : J ⊂ R → I ⊂ R is an increasing
homeomorphism, then α ◦ f is also a future-directed C0 causal curve.

Causality can be described just as well via continuous curves, as we see next.

Proposition 3.2 For any p, q ∈ M , p < q if and only if there exists a future-
directed C0 causal curve α : [a, b]→M with α(a) = p and α(b) = q.

Proof. The “only if” part is immediate. For the converse, fix a future-directed
C0 causal curve α : [a, b] → M with α(a) = p and α(b) = q, and a finite open
cover U1, . . . ,Uk of the compact set α[a, b] by convex normal neighborhoods.
Renaming these sets if needed, we can choose a partition a = t0 < · · · < tk = b
of the interval [a, b] such that α[ti−1, ti] ⊂ Ui, and hence α(ti−1) <Ui α(ti) for
each i ∈ {1, . . . , k} by item (iii) in Prop. 3.1. By choosing, for each i = 1, . . . , k,
a piecewise smooth future-directed causal curve segment βi in Ui from α(ti−1) to
α(ti), and concatenating them in succesion, we end up with a piecewise causal
curve segment connecting p and q, as desired.

�

Corollary 3.1 Suppose a function f ∈ C∞(M) has past-directed timelike gra-
dient ∇f everywhere. Then, for any future-directed C0 causal curve α : I ⊂
R→M , the real-valued continuous function f ◦α : I → R is strictly increasing.



Proof. Let t, s ∈ I with s < t. Then by Prop. 3.2 there exists a piecewise
smooth, future-directed causal curve γ : [a, b] → M with γ(a) = α(s) and
γ(b) = α(t). Since ∇f is past directed timelike and γ is future-drected we have
g((∇f) ◦ γ, γ′) > 0. Hence,

f(α(t))− f(α(s)) = (f ◦ γ)(b)− (f ◦ γ)(a)

=

∫ b

a

(f ◦ γ)′(λ)dλ

=

∫ b

a

g((∇f) ◦ γ(λ), γ′(λ))dλ > 0

⇒ f(α(t)) > f(α(s)).

�

In defining a topology on the space of causal curves, as well as in the proof of
the Limit Curve Lemma below, the following technical result will be of crucial
importance

Lemma 3.1 At each p ∈M , there exists a coordinate system (U, φ = (x1, . . . , xn))
of M and a constant C > 0 with the following properties.

1) ∇x1 is past-directed timelike on U .

2) Any future-directed C0 causal curve α : [a, b] → M whose image is con-
tained in U is h-rectifiable, and the h-length Lh(α) of α satisfies

Lh(α) ≤ C|x1 ◦ α(b)− x1 ◦ α(a)|. (12)

Proof. Fix p ∈ M and an orthonormal basis {e1, . . . , en} of TpM . Let (V, φ =
(x1, . . . , xn)) be a normal coordinate system at p, such that

∂

∂xi
(p) ≡ ei, i ∈ {1, . . . , n}.

In particular, gij(p) = ηij with respect to this system, so∇x1(p) = −∂/∂x1(p) =
e1 is timelike, and by continuity, we can find an open set U 3 p such that U ⊂ V
is compact, φ(U) ⊂ Rn is an Euclidean open ball with center φ(p), and ∇x1|U
is timelike everywhere.

We now claim that we can further shrink U so that the flat Lorentz metric
g0 on U given by the line element

ds2 = −2(dx1)2 +

n∑
i=2

(dxi)2 (13)

satisfies
v ∈ TU \ {0} and g(v, v) ≤ 0 =⇒ g0(v, v) < 0.



Indeed, suppose this claim is false. Then we can find sequences (qk) ⊂ M and
vk ∈ TqkM \ {0} with

qk → p, g(vk, vk) ≤ 0 and g0(vk, vk) ≥ 0.

We can assume without loss of generality that (qk) ⊂ V and vk = vik · ∂
∂xi

∣∣
qk

satisfies ‖(v1k, . . . , vnk )‖ = 1 for every k ∈ N, where ‖ . ‖ denotes the Euclidean
norm. By the compactness of the Euclidean unit sphere, we can assume, up to
passing to a subsequence, that vik → vi0, for each i ∈ {1, . . . , n}, where

‖(v10 , . . . , vn0 )‖ = 1. (14)

If we put v0 := vi0 · ∂
∂xi

∣∣
p

we conclude that vk → v0 on TM . Therefore,

g(v0, v0) ≤ 0 and g0(v0, v0) ≥ by continuity. Explicitly,

g(v0, v0) ≤ 0⇒
n∑
i=2

(vi0)2 ≤ (v10)2 and g0(v0, v0) ≥ 0⇒
n∑
i=2

(vi0)2 ≥ 2(v10)2,

which combined imply that v0 ≡ 0, contradicting (14). This contradiction
establishes the claim, and for the remainder of the proof we assume that U has
been shrunk accordingly.

We next claim that exists a number c > 0 for which√
h(v, v) ≤ c · ‖(v1, . . . , vn)‖, ∀v = vi · ∂

∂xi
∈ TU. (15)

For suppose not. Then, for every k ∈ N we could find a qk ∈ U and vk =
vik · ∂

∂xi

∣∣
qk

such that

h(vk, vk) = hij(qk)vikv
j
k > k · ‖(v1k, . . . , vnk )‖2. (16)

In particular, the strict inequality in (16) implies that each vk is nonzero, so the
vectors

v̂k :=
(v1k, . . . , v

n
k )

‖(v1k, . . . , vnk )‖
again live on the Euclidean unit sphere. By the compactness of the latter and
of U , we can again assume up to passing to a subsequence that qk → q ∈ U ⊂ V
and v̂k → v̂ = (v̂1, . . . , v̂n) ∈ Sn−1. Thus, on the one hand,

hij(qk)v̂ikv̂
j
k → hij(q)v̂

iv̂j ,

on the other hand (16) implies that hij(qk)v̂ikv̂
j
k → +∞, a contradiction. Thus

the claim is established.
Now, fix c > 0 such that (15) holds, and define C = c

√
3. To finalize the

proof, we must show that the coordinate system (U, φ|U ) is the desired one.
Let therefore α : [a, b] → M be a future-directed C0 causal curve such that
α[a, b] ⊂ U . Let

P = {t0 = a < · · · tm = b}



be any partition of the interval [a, b]. Fix any ` ∈ {1, . . . ,m}. Firstly, note that
by Prop. 3.2 applied to (U, g|U ) viewed as a spacetime in irts own right we have
α(t`−1) <U α(t`), and therefore, by the chosen properties of the metric (13) we
have α(t`−1) �g0 α(t`) in U . Secondly, Corollary 3.1 also applied to (U, g|U )
means that the function

f : s ∈ [t`−1, t`] 7→ x1 ◦ α(s) ∈ R

is strictly increasing, and thus defines a homeomorphism onto its image Imf =:
[s`−1, s`]. Write zj(s) := xj((α ◦ f−1)(s)) for each s ∈ [s`−1, s`], j ∈ {1, . . . , n},
and note that z1(s) ≡ s. Put also z(s) = (z1(s), . . . , zn(s)). Consider now the
straight line segment in Rn given by

Z(s) = z(s`−1) +
s− s`−1
s` − s`−1

· [z(s`)− z(s`−1)] s ∈ [s`−1, s`].

Now, it is easily verified that Z(s`−1) = φ(α(t`−1)) and Z(s`) = φ(α(t`)). Since
φ(U) is an Euclidean ball, it is in particular convex, so that Im(φ−1◦Z) ⊂ φ(U),
and φ−1 ◦ Z(s`−1)�g0 φ

−1 ◦ Z(s`). We now conclude that

n∑
j=2

[
zj(s`)− zj(s`−1)

s` − s`−1

]2
< 2⇒ ‖Z(s`)− Z(s`−1)‖ <

√
3(s` − s`−1), (17)

where we have added 1 =
[
z1(s`)−z1(s`−1)

s`−s`−1

]2
on both sides of the inquality on

the left to get the implication.
Finally,

dh(α(t`−1), α(t`)) ≤
∫ s`

s`−1

√
h((φ−1 ◦ Z)′(s), (φ−1 ◦ Z)′(s))ds

=

∫ s`

s`−1

√
hij((φ−1 ◦ Z)(s))

(
zi(s`)− zi(s`−1)

s` − s`−1

)(
zj(s`)− zj(s`−1)

s` − s`−1

)
ds

(15)

≤ c

∫ s`

s`−1

‖Z(s`)− Z(s`−1)‖
s` − s`−1

(17)

≤ C(s` − s`−1) ≡ C(f(t`)− f(t`−1)). (18)

Summing inequality (18) over `, we have

m∑
`=1

dh(α(t`−1), α(t`)) ≤ C ·
m∑
`=1

(x1◦α(t`)−x1◦α(t`−1)) = C(x1◦α(b)−x1◦α(a)).

The supremum on the left-hand side of the previous inequality over all the
partitions P of [a, b] now yields

Lh(α) ≤ C(x1 ◦ α(b)− x1 ◦ α(a)).

In particular, α is h-rectifiable as claimed.



�

Lemma 3.1 has an important immediate consequence: the h-rectifiability of
C0 causal curves, and the existence of a well-defined h-arc length function for
them.

Proposition 3.3 (Riemannian arc length) Let α : I →M be future-directed
C0 causal curve. For any s, t ∈ I with s ≤ t, α|[s,t] is an h-rectifiable curve. In
addition, for any fixed t0 ∈ I, the h-arc length function St0α : I → R given by

St0α (t) :=

{
Lh(α|[t0,t]) if t ≥ t0,
−Lh(α|[t,t0]) if t < t0

is a continuous strictly increasing function. Furthermore, if I = (a, b), with
−∞ ≤ a < b ≤ +∞ and α|[t0,b) [resp. α|(a,t0]] is right-inextendible [resp. left-
inextendible], then St0α [t0, b) = [0,+∞) [resp. St0α (a, t0] = (−∞, 0]].

Proof. Let any t1, t2 ∈ I with t1 < t2 be given. We can cover the compact set
α[t1, t2] ⊂M with fiinitely many coordinate neighborhoods

(U1, (x
1
1, . . . , x

n
1 )), . . . , (Uk, (x

1
k, . . . , x

n
k ))

as in Lemma 3.1, and pick a partition s0 = t1 < · · · < sk = t2 of the interval
[t1, t2] for which α[s`−1, s`] ⊂ U` for each ` ∈ {1, . . . , k}. Thus, each α|[s`−1,s`]

is h-rectifiable, whence we conclude that α|[t1,t2] is.
Moreover, we can find numbers C1, . . . , Ck > 0 for which

St0α (s`)− St0α (s`−1) ≤ C`|x1`(α(s`)− x1`−1(α(s`−1))|, ∀` ∈ {1, . . . , k}.

(Cf. Eq.(12).) This shows that St0α is continuous, since t1, t2 and the partition
were chosen entirely arbitrarily. Now,

St0α (t2) = St0α (t1) + Lh(α|[t1,t2]). (19)

We can pick a convex normal neighborhood U of α(t1) (say) and for some ε > 0
we have t1 + ε < t2 and α[t1, t1 + ε] ⊂ U , whence α(t1) <U α(t1 + ε), and in
particular we must have α(t1) 6= α(t1 + ε), so

Lh(α|[t1,t2]) ≥ dh(α(t1), α(t1 + ε)) > 0,

and then (19) yields St0α (t2) > St0α (t1). This shows that St0α is strictly increasing.
Finally, we assume now that α|[t0,b) is right-inextendible, since the left-

inextendible case is analogous. We of course have St0α [t0, b) ⊂ [0,+∞), so we
need only to show the opposite inclusion. Let A > 0. Right-inextendibility
means that for some sequence (tk) ⊂ [t0, b) with tk → b, the sequence (α(tk)) ⊂
M does not converge. Now, due to the Hopf-Rinow theorem, (M,dh) is a com-
plete metric space satisfying the Heine-Borel property; hence the latter sequence
is not dh-bounded. But then, for large enough k we have tk > t0 and

St0α (tk) = Lh(α|[t0,tk]) ≥ dh(α(t0), α(tk)) > A.

Since St0α is continuous we must have St0α (tA) = A for some (unique) tA ∈ [t0, b)
by the intermediate value property. This concludes the proof.



�

Proposition 3.3, in view of Remark 3.1 above, allows one to choose spe-
cial parametrizations for future-directed C0 causal curves, the h-arc length
(re)parametrization, as follows. Given a future-directed C0 causal curve α :
I →M , pick a number t0 ∈ I. The function St0α defined in Proposition 3.3 is a
homeomorphism onto its image J t0α := St0α (I), thus

α ◦ (St0α )−1 : J t0α →M

is also a future-directed C0 causal curve, an h-arc length reparametrization of
α. If α is equal to one of its h-length reparametrizations, then it is simply said
to be h-arc length parametrized. It is easy to see that this happens if and only
if

Lh(α|[t,t′]) = t′ − t, ∀t, t′ ∈ I, t < t′. (20)

4 The Limit Curve Lemma

In this section we prove one of the most important technical results in
Lorentzian geometry. The following fact is needed in its proof but is also of
independent interest. This can be loosely stated as: “the uniform limit of a
sequence of causal curves is causal”. However, this holds with a caveat, namely
that the curves in the sequence be parametrized with respect to h-arc length.

Proposition 4.1 Let (αk : [a, b] → M)k∈N be a sequence of future-directed C0

causal curves, all defined on the same compact interval [a, b] and h-arc length
parametrized. If this sequence converges dh-uniformly to a map α : [a, b]→M ,
then α is also a future-directed C0 causal curve (not necessarily h-arc length
parametrized).

Proof. It is a standard fact that α is a continuous map. Fix now t0 ∈ [a, b] and
let (U, (x1, . . . , xn)) be a coordinate system at α(t0) as in Lemma 3.1. Choose
also a convex normal neighborhood U 3 α(t0) with U ⊂ U . Let t1 < t2 in
[a, b] such that α[t1, t2] ⊂ U . Uniform convergence implies that there exists
k0 ∈ N such that for any k ∈ N with k ≥ k0 we have αk[t1, t2] ⊂ U . Then,
for any such k, αk(t1) <U αk(t2), so the initial velocities of the radial geodesics

vk :=
−−−−−−−−→
αk(t1)αk(t2) from αk(t1) to αk(t2) are causal vectors. Since αk(ti)→ α(ti)

for i = 1, 2 we have that v =
−−−−−−−→
α(t1)α(t2) is either zero or causal. Let C > 0 such

that Eq.(12) holds for each k ≥ k0; taking (20) into account, we then have

t2 − t1 = Lh(αk|[t1,t2]) ≤ C|x
1(αk(t1))− x1(αk(t2))|,∀k ≥ k0.

Upon taking the limit k → +∞, we get

0 < t2 − t1 ≤ C|x1(α(t1))− x1(α(t2))| ⇒ α(t2) 6= α(t1),

and thus v 6= 0; that is, it is causal, whence α(t1) <U α(t2). This concludes the
proof.
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Theorem 4.1 (Limit Curve lemma) Let I ⊂ R be either I = [0,+∞) or
I = (−∞,+∞), and let (γk : I → M)k∈N be a sequence of future-directed
C0 causal curves parametrized by h-arc length, inextendible if I = R, future-
inextendible if I = [0,+∞). Suppose the sequence (γk(0))k∈N has a limit point
p ∈ M . Then, there exists a future-directed C0 causal curve γ : I → M (not
necessarily parametrized by h-arc length, but inextendible if I = R, future-
inextendible if I = [0,+∞)) such that γ(0) = p, and for some subsequence
(γki)i∈N we have γki(0)→ p and

γki |C → γ|C dh-uniformly in each compact C ⊂ I.

A analogous, time-dual result holds for a sequence of past-directed C0 causal
curves.

Proof. In order to fix ideas we take I = R, since the case of the half-interval is
entirely analogous. Start by picking any subsequence (γki)i∈N with γki(0)→ p.
Since each curve γki is h-arc length parametrized, we have, for any t < t′ ∈ I
(cf. Eq.(20)):

dh(γki(t), γki(t
′)) ≤ Lh(γki |[t,t′]) = |t− t′|, ∀i ∈ N. (21)

Eq. (21) implies (i) that the collection {γki}i∈N is equicontinuous and (ii) that
the sequence (γki(t))i∈N is bounded (and hence contained in a compact set by
Hopf-Rinow) for each t ∈ I. (This is obtained by taking, say, t′ = 0 in (21).)
By the Arzelà-Ascoli theorem on Cc(R,M), passing to a further subsequence if
necessary, we can conclude that there exists a continuous map γ : R→M such
that

γki |C → γ|C dh-uniformly in each compact C ⊂ I.

Since for any t < t′ ∈ I, we have γki |[t, t′] → γ|[t, t′] dh-uniformly, Proposi-
tion 4.1 implies that γ|[t,t′] is a future-directed C0 causal curve. We conclude
that γ itself is such.

Finally, we need to show that γ is inextendible. It is enough to show
it is right-inextendible, since the other side is again entirely analogous. As-
sume, by way of contradiction, that there exists a right-endpoint q ∈ M . Let
(U, (x1, . . . , xn)) at q as given in Lemma 3.1. For some t0 ∈ R we therefore have
γ[t0,+∞) ⊂ U . Consider the open set

O = {r ∈ U : x1(γ(t0)) < x1(r) < x1(q)}.

Pick any sequence (tm) ⊂ [t0,+∞) converging to +∞. Then γ(tm)→ q. Given
any t ∈ [t0,+∞), eventually tm > t. But since x1 strictly increases along γ, we
then will have

x1(γ(t)) < x1(γ(tm))→ x1(q) =⇒ x1(γ(t)) < x1(q).



We conclude that for any t > t0 we shall have γ[t,+∞) ⊂ O. Let

R := C|x1(q)− x1(γ(t0))| > 0,

where C > 0 is such that Eq.(12) holds. Since γki |[t0+1,t0+R+2] → γ|[t0+1,t0+R+2]

dh-uniformly, for large enough i we have γki([t0 + 1, t0 +R+ 2]) ⊂ O. But then

R+ 1 = Lh(γki |[t0+1,t0+R+2]) ≤ C|x1(γki(t0 +R+ 2))− x1(γki(t0 + 1))|
≤ C|x1(q)− x1(γ(t0)| ≡ R,

an absurd.
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